U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY

WORKING PAPER SERIES

REPORT
ON
SHERMAN RESERVOIR
SHERMAN COUNTY
NEBRASKA
EPA REGION VII
WORKING PAPER No. 561

CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON and ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA

REPORT
ON
SHERMAN RESERVOIR
SHERMAN COUNTY
NEBRASKA
EPA REGION VII
WORKING PAPER No. 561

WITH THE COOPERATION OF THE

NEBRASKA DEPARTMENT OF ENVIRONMENTAL CONTROL

AND THE

NEBRASKA NATIONAL GUARD

AUGUST, 1976

CONTENTS

		Page
For	reword	ii
Lis	st of Nebraska Study Reservoirs	iv
Lak	ke and Drainage Area Map	v
Sec	ctions	
I.	Introduction	1
II.	Conclusions	1
III.	Lake and Drainage Basin Characteristics	2
IV.	Lake Water Quality Summary	3
٧.	Literature Reviewed	7
VI.	Appendices	8

FOREWORD

The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nation-wide threat of accelerated eutrophication to freshwater lakes and reservoirs.

OBJECTIVES

The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point-source discharge reduction and non-point source pollution abatement in lake watersheds.

ANALYTIC APPROACH

The mathematical and statistical procedures selected for the Survey's eutrophication analysis are based on related concepts that:

- a. A generalized representation or model relating sources, concentrations, and impacts can be constructed.
- b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients.
- c. With such a transformation, an assessment of the potential for eutrophication control can be made.

LAKE ANALYSIS

In this report, the first stage of evaluation of lake and watershed data collected from the study lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [§303(e)], water quality criteria/standards review [§303(c)], clean lakes [§314(a,b)], and water quality monitoring [§106 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972.

Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condition are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation's freshwater lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by EPA and to augment plans implementation by the states.

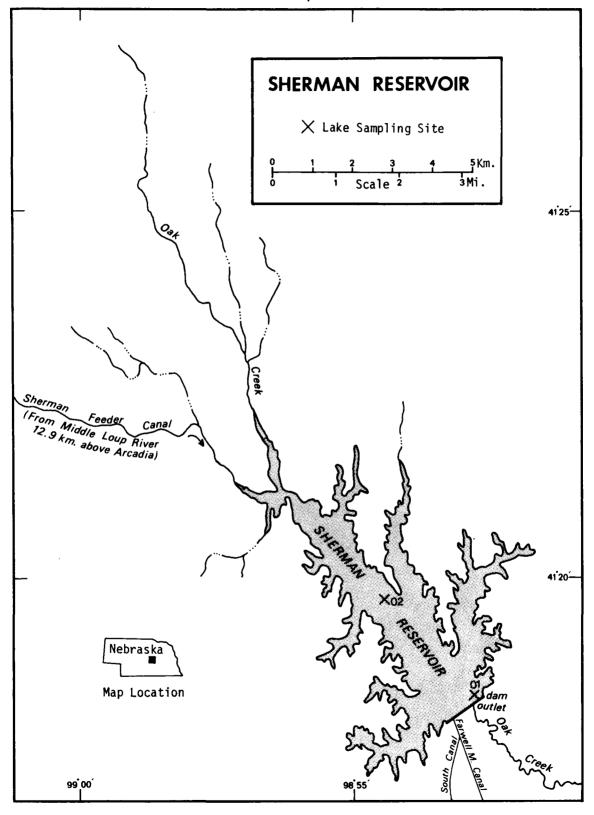
ACKNOWLEDGMENT

The staff of the National Eutrophication Survey (Office of Research & Development, U. S. Environmental Protection Agency) expresses sincere appreciation to the Nebraska Department of Environmental Control for professional involvement, to the Nebraska National Guard for conducting the tributary sampling phase of the Survey, and to those wastewater treatment plant operators who voluntarily provided effluent samples and flow data.

The staff of the Water Pollution Control Division, Department of Environmental Control, provided invaluable lake documentation and counsel during the Survey, reviewed the preliminary reports, and provided critiques most useful in the preparation of this Working Paper series.

Major General Francis L. Winner, the Adjutant General of Nebraska, and Project Officer Colonel Burl M. Johnson, who directed the volunteer efforts of the Nebraska National Guardsmen, are also gratefully acknowledged for their assistance to the Survey.

NATIONAL EUTROPHICATION SURVEY


STATE OF NEBRASKA

RESERVOIR NAME

Branched Oak
Harlan County
Harry D. Strunk
Hugh Butler
Johnson
McConaughy
Pawnee
Sherman
Swanson

COUNTY

Lancaster
Harlan
Frontier
Frontier, Red Willow
Dawson, Gosper
Keith
Lancaster
Sherman
Hitchcock

SHERMAN RESERVOIR

STORET NO. 3108

I. INTRODUCTION

Sherman Reservoir was included in the National Eutrophication

Survey as a water body of interest to the Nebraska Department of Environmental Control. This report relates only to reservoir sampling data.

II. CONCLUSIONS

A. Trophic Condition:

Survey data indicate that Sherman Reservoir is eutrophic. It ranked fourth in overall trophic quality when the nine Nebraska reservoirs sampled in 1974 were compared using a combination of six parameters*. Five of the reservoirs had less median total phosphorus, seven had less median dissolved phosphorus, one had less and two had the same median inorganic nitrogen, none had less mean chlorophyll <u>a</u>, and one had greater mean Secchi disc transparency. Depression of dissolved oxygen with depth occurred at sampling station 1 in July.

Survey limnologists did not observe macrophytes or surface concentrations of algae during sampling visits.

B. Rate-Limiting Nutrient:

The algal assay results indicate that Sherman Reservoir was limited by nitrogen at the time the assay sample was collected (04/17/74). The reservoir data indicate nitrogen limitation in September as well.

^{*} See Appendix A.

III. LAKE AND DRAINAGE BASIN CHARACTERISTICS[†]

- A. Lake Morphometry^{††}:
 - 1. Surface area: 11.51 kilometers².
 - 2. Mean depth: 7.3 meters.
 - 3. Maximum depth: 28.7 meters.
 - 4. Volume: $84.023 \times 10^6 \text{ m}^3$.
- B. Precipitation*:
 - 1. Year of sampling: 56.3 centimeters.
 - 2. Mean annual: 58.9 centimeters.

⁺ Table of metric equivalents--Appendix B.

⁺⁺ Martin and Hanson, 1966; maximum depth from Hartung, 1974.

^{*} See Working Paper No. 175, "...Survey Methods, 1973-1976".

IV. LAKE WATER QUALITY SUMMARY

Sherman Reservoir was sampled three times during the openwater season of 1974 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from a number of depths at two stations on the reservoir (see map, page v). During each visit, a single depth-integrated (4.6 m or near bottom to surface) sample was composited from the stations for phytoplankton identification and enumeration; and during the first visit, a single 18.9-liter depth-integrated sample was composited for algal assays. Also each time, a depth-integrated sample was collected from each of the stations for chlorophyll a analysis. The maximum depths sampled were 17.1 meters at station 1 and 7.6 meters at station 2.

The sampling results are presented in full in Appendix D and are summarized in the following table (the July nutrient samples were not properly preserved and were not analyzed).

A. SUMMARY OF PHYSICAL AND CHEMICAL CHARACTERISTICS FOR SHERMAN COUNTY RESERVOIR STORET CODE 3108

	IST SAMP	LING (4/17/74)	2ND SAMPLING (7/ 1/74)	3RD SAMPL	ING (9/27/74)
	2	SITES	2 SITES	2 S	ITES
PARAMETER	RANGE	MEAN MEDIAN	RANGE MEAN MEDIAN	RANGE	MEAN MEDIAN
TEMP (C)	7.4 - 7.7	7.6 7.7	18.0 - 23.3 22.1 22.8	16.2 - 16.4	16.3 16.2
DISS OXY (MG/L)	10.2 - 10.6	10.5 10.6	3.2 - 8.0 7.2 7.8	7.8 - 9.2	8.8 9.0
CNDCTVY (MCROMO)	14 121.	58. 46.	212 228. 224. 227.	168 170.	169. 169.
PH (STAND UNITS)	***** -***	****	8.2 - 8.6 8.5 8.6	8.1 - 8.8	8.6 8.8
TOT ALK (MG/L)	104 107.	105. 105.	*****************	103 108.	105. 105.
TOT P (MG/L)	0.062 - 0.067	0.065 0.065	******	0.099 - 0.130	0.111 0.106
ORTHO P (MG/L)	0.046 - 0.054	0.050 0.050		0.026 - 0.066	0.043 0.028
NO2+NO3 (MG/L)	0.030 - 0.120	0.059 0.055		0.020 - 0.070	0.043 0.030
AMMONIA (MG/L)	0.030 - 0.060	0.044 0.045		0.020 - 0.060	0.034 0.030
KJEL N (MG/L)	0.300 - 0.700	0.400 0.350	****	0.200 - 0.500	0.300 0.300
INORG N (MG/L)	0.060 - 0.180	0.102 0.100	*****	0.050 - 0.090	0.077 0.090
TOTAL N (MG/L)	0.330 - 0.820	0.459 0.405	*****	0.260 - 0.530	0.343 0.330
CHERPYL A (UG/L)	2.7 - 3.2	2.9 2.9	2.3 - 2.5 2.4 2.4	13.4 - 16.2	14.8 14.8
SECCHI (METERS)	0.6 - 0.7	0.7 0.7	1.8 - 2.1 2.0 2.0	1.1 - 1.1	1.1 1.1

B. Biological characteristics:

1. Phytoplankton -

Sampling Date		ninant era	Algal Units per ml
04/17/74	1. 2. 3. 4. 5.		503 457 183 137 91 229
		Total	1,600
07/01/74	1. 2. 3. 4. 5.	Merismopedia sp. Flagellates Cryptomonas sp. Schroederia sp. Stephanodiscus sp. Other genera	461 423 269 154 154
		Total	1,537
09/27/74	1. 2. 3. 4. 5.	Stephanodiscus sp. Fragilaria sp. Flagellates Cyclotella sp. Melosira sp. Other genera	2,198 244 153 122 122 244
		Total	3,083

2. Chlorophyll \underline{a} -

Sampling Date	Station Number	Chlorophyll <u>a</u> (µg/l)
04/17/74	1 2	3.2 2.7
07/01/74	1 2	2.3 2.5
09/27/74	1 2	16.2 13.4

C. Limiting Nutrient Study:

1. Autoclaved, filtered, and nutrient spiked -

Spike (mg/l)	Ortho P Conc. (mg/l)	Inorganic N Conc. (mg/l)	Maximum yield (mg/l-dry wt.)
Control	0.045	0.029	2.0
0.050 P	0.095	0.029	2.6
0.050 P + 1.0 N	0.095	1.029	28.1
1.0 N	0.045	1.029	19.4

2. Discussion -

The control yield of the assay alga, <u>Selenastrum capricornutum</u>, indicates that the potential primary productivity of Sherman Reservoir was high at the time the assay sample was collected (04/17/74). Also, the significant increase in yield with the addition of nitrogen alone indicates that the reservoir was limited by nitrogen at that time. Note that the addition of phosphorus alone resulted in a yield not significantly greater than that of the control.

The reservoir data also indicate nitrogen limitation in September as well (the mean inorganic nitrogen/orthophosphorus ratio was 2/1).

V. LITERATURE REVIEWED

- Hartung, Ray, 1974. Personal communication (reservoir morphometry). NE Dept. of Env. Control, Lincoln.
- Martin, R. O. R., and Ronald C. Hanson, 1966. Reservoirs in the United States. Water Supply Paper #1838, U.S. Geol. Surv., Wash., DC.

VI. APPENDICES

APPENDIX A

LAKE RANKINGS

LAKE DATA TO BE USED IN RANKINGS

LAKE CODE	LAKE NAME	MEDIAN TOTAL P	MEDIAN INORG N	500- MEAN SEC	MEAN CHLORA	15- MIN DO	MEDIAN DISS ORTHO P
3101	BRANCHED OAK	0.044	0.070	456.444	17.033	9.400	0.013
3102	HARLAN COUNTY RESERVOIR	0.112	0.365	476.111	27.822	12.200	0.061
3103	HARRY D. STRUNK (MEDICIN	0.064	0.460	470.500	14.367	14.200	0.009
3104	HUGH BUTLER (RED WILLOW)	0.061	0.090	468.875	16.612	14.400	0.014
3105	JOHNSON RESERVOIR	0.075	0.340	477.667	26.133	8.600	0.009
3106	LAKE MCCONAUGHY	0.027	0.585	409.555	8.644	11.400	0.004
3107	PAWNEE LAKE	0.060	0.175	453.000	15.367	8.800	0.020
3108	SHERMAN COUNTY RESERVOIR	0.067	0.090	451.167	6.717	11.800	0.050
3110	SWANSON RESERVOIR	0.067	0.090	466.333	14.450	11.000	0.016

PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)

LAKE CODE	LAKE NAME	MEDIAN TOTAL P	MEDIAN Inorg n	500- MEAN SEC	MEAN Chlora	15- MIN DO	MEUIAN DISS ORTHO P	INDEX NO
3101	BRANCHED DAK	88 (7)	100 (8)	63 (5)	25 (2)	75 (6)	63 (5)	414
3102	HARLAN COUNTY RESERVOIR	0 (0)	25 (2)	13 (1)	0 (0)	25 (2)	0 (0)	63
3103	HARRY D. STRUNK (MEDICIN	50 (4)	13 (1)	25 (2)	75 (6)	13 (1)	81 (6)	257
3104	HUGH BUTLER (RED WILLOW)	6,3 (5)	75 (5)	38 (3)	38 (3)	0 (0)	50 (4)	264
3105	JOHNSON RESERVOIR	13 (1)	38 (3)	0 (0)	13 (1)	100 (8)	81 (6)	245
3106	LAKE MCCONAUGHY	100 (8)	0 (0)	100 (8)	88 (7)	50 (4)	100 (8)	438
3107	PAWNEE LAKE	75 (6)	50 (4)	75 (6)	50 (4)	88 (7)	25 (2)	363
3108	SHERMAN COUNTY RESERVOIR	38 (3)	75 (5)	88 (7)	100 (8)	38 (3)	13 (1)	352
3110	SWANSON RESERVOIR	25 (2)	75 (5)	50 (4)	63 (5)	63 (5)	38 (3)	314

LAKES RANKED BY INDEX NOS.

RANK	LAKE CODE	LAKE NAME	INDEX NO
1	3106	LAKE MCCONAUGHY	438
2	3101	BRANCHED OAK	414
3	3107	PAWNEE LAKE	363
4	3108	SHERMAN COUNTY RESERVOIR	352
5	3110	SWANSON RESERVOIR	314
6	3104	HUGH BUTLER (RED WILLOW)	264
7	3103	HARRY D. STRUNK (MEDICIN	257
8	3105	JOHNSON RESERVOIR	245
9	3102	HARLAN COUNTY RESERVOIR	63

APPENDIX B

CONVERSION FACTORS

CONVERSION FACTORS

Hectares x 2.471 = acres

Kilometers \times 0.6214 = miles

Meters x 3.281 = feet

Cubic meters $\times 8.107 \times 10^{-4} = acre/feet$

Square kilometers $x \cdot 0.3861 = square miles$

Cubic meters/sec x 35.315 = cubic feet/sec

Centimeters $x \ 0.3937 = inches$

Kilograms x 2.205 = pounds

Kilograms/square kilometer x 5.711 = lbs/square mile

APPENDIX C

PHYSICAL and CHEMICAL DATA

310801 41 19 30.0 098 54 00.0 SHERMAN COUNTY RESERVOIR 31163 NEBRASKA

						11EP/ 3	ALES		1202 FEET DEP	тн	
DATE FROM TO	TIME DEPTH OF DAY FEET	00010 WATER TEMP CENT	00300 D0 MG/L	00077 TRANSP SECCHI INCHES	00094 CNDUCTVY FIELD MICROMHO	00400 PH SU	00410 T ALK CACO3 MG/L	00610 NH3-N TOTAL MG/L	00625 TOT KJEL N MG/L	00630 NO26NO3 N-TOTAL MG/L	00671 PHOS-DIS ORTHO MG/L P
74/04/17	09 35 0000 09 35 0005 09 35 0015 09 35 0050	7.6 7.6 7.6 7.4	10.6 10.6 10.2	28	29 25 72 121		107 106 105 105	0.060 0.050 0.050 0.050	0.700 0.400 0.400 0.500	0.120 0.070 0.060 0.060	0.054 0.050 0.051 0.050
74/07/01	15 25 0000 15 25 0005 15 25 0020 15 25 0035 15 25 0056	22.6 22.8 21.7 20.8	8.0 7.8 7.2 6.8	84	226 227 222 219	8.60 8.60 8.50 8.40					
74/09/27	14 20 0000 14 20 0005 14 20 0015 14 20 0045	18.0 16.2 16.2 16.2	3.2 8.8 9.0 9.0 8.6	42	212 169 169 169 170	8.20 8.85 8.79 8.79 8.82	106 108 103 106	0.040 0.060 0.020 0.040	0.500 0.300 0.300 0.300	0.030 0.030 0.030 0.020K	0.028 0.028 0.026 0.026
DATE FROM	TIME DEPTH		32217 CHLRPHYL	00031 INCDT LT REMNING							
70 74/04/17	09 35 0000 09 35 0005 09 35 0015	MG/L P 0.067 0.065 0.065	UG/L 3•2	PERCENT							
	09 35 0050 15 25 0000 14 20 0000 14 20 0009 14 20 0015	0.066 0.099 0.106 0.101	2.3 16.2	1.0							

K VALUE KNOWN TO BE LESS THAN INDICATED

14 20 0045

0.104

STORET RETRIEVAL DATE 75/12/23

310802 41 20 45.0 098 55 45.0 SHERMAN COUNTY RESERVOIR 31163 NEBRASKA

			·			11EP/ 3	ALES		1202 FEET DEP	тн	
DATE FROM TO	TIME DEPTH OF DAY FEET	00010 WATER TEMP CENT	00300 DO MG/L	00077 Transp Secchi Inches	00094 CNDUCTVY FIELD MICROMHO	00400 PH SU	00410 T ALK CACO3 MG/L	00610 NH3-N Total MG/L	00625 TOT KJEL N MG/L	00630 NO26NO3 N-TOTAL MG/L	00671 PHOS-DIS ORTHO MG/L P
74/04/17	10 00 0005 10 00 0015 10 00 0025	7.7 7.7 7.7 7.7	10.6 10.6 10.6	25	14 23 63 115		105 105 104 104	0.040 0.030 0.040 0.030	0.300 0.300 0.300 0.300	0.050 0.030 0.040 0.040	0.050 0.050 0.048 0.046
	15 10 0000 15 10 0005 15 10 0015 15 10 0020	23.2 23.3 23.2 23.2	7.8 8.0 7.8 8.0	72	227 228 228 228	8.60 8.60 8.60	104			0.040	0.063
74/09/27	14 50 0000 14 50 0005 14 50 0010	16.4 16.4 16.4	7.8 9.2 9.2	42	168 168 168	8.16 8.40 8.10	104 104 105	0.030 0.030 0.020K	0.200K 0.200K	0.060 0.060 0.070	0.063 0.065 0.066
DATE FROM TO	TIME DEPTH OF DAY FEET	00665 PHOS-TOT MG/L P	32217 CHLRPHYL A UG/L	00031 INCDT LT REMNING PERCENT							
74/04/17	10 00 0000 10 00 0005 10 00 0015 10 00 0025	0.063 0.065 0.062 0.066	2.7								
	15 10 0000 15 10 0010 14 50 0000 14 50 0005 14 50 0010	0.114 0.120 0.130	2.5 13.4	1.0							

K VALUE KNOWN TO BE LESS THAN INDICATED APPENDIX D

TRIBUTARY DATA

STORET RETRIEVAL DATE 76/01/27

3108A1
41 17 37.0 098 52 06.0
0AK CREEK
31109 7.5 LOUP CITY SE
0/SHERMAN RESERVOIR
BRDG ON SEC RD 1 M DWNSTRM SHERMAN DAM
11EPALES 2111204
4 0000 FEET DEPTH

DATE FROM	TIME OF	DEPTH	00630 NO28NO3 N-TOTAL	00625 TOT KJEL N	00610 NH3-N Total	00671 PHOS-DIS ORTHO	00665 PHOS-TOT
TO	DAY	FEET	MG/L	MG/L	MG/L	MG/L P	MG/L P
74/08/25	14 59	5	0.470	0.500	0.075	0.490	0.610
74/09/08	14 3	5	0.470	0.550	0.060	0.480	0.620
74/10/06	14 59	5	0.660	0.800	0.050	0.550	0.630
74/11/24	17 2	5	0.768	0.500	0.064	0.490	0.610
74/12/24	16 30	0	0.910	1.000	0.165	0.360	0.615
75/01/25	11 00	0	0.830	2.300	0.256	0.320	1.390
75/02/21	16 00	0	0.915	1.750	0.114	0.497	1.000
75/03/25	14 00	0	0.681	1.100	0.055	0.485	0.600
75/04/20	14 2	0	0.510	1.300	0.050	0.530	0.660
75/05/04	17 19	5	0.390	0.750	0.158	0.575	0.645

STORET RETRIEVAL DATE 76/01/27

3108B1
41 21 47.0 098 57 25.0
UNNAMED CREEK
31 7.5 LOUP CITY SE
T/SHERMAN RESERVOIR
BRDG ON SEC RD 6.5 MI N OF LOUP CITY
11EPALES 2111204
4 0000 FEET DEPTH

DATE FROM	TIME OF	DEPTH	00630 NO2&NO3 N-TOTAL	00625 TOT KJEL N	00610 NH3-N Total	00671 PHOS-DIS ORTHO	00665 PHOS-TOT
TO	DAY	FEET	MG/L	MG/L	MG/L	MG/L P	MG/L P
74/08/25	09 59	5	0.288	0.300	0.020	0.165	0.220
74/09/08	15 20)	0.280	0.500	0.015	0.125	0.145
74/10/06	14 20)	0.432	0.450	0.045	0.140	0.175
74/11/17	14 40)	0.368	0.400	0.050	0.145	0.150
75/06/01	11 30)	0.185	0.850	0.025	0.135	0.150
75/06/15	16 20)	0.350	1.150	0.170	0.160	0.250
75/06/29	11 00)	0.290	1.050	0.100	0.190	0.300
75/07/13			0.145	1.280	0.035	0.125	0.175
75/08/10	15 49	5	0.015	1.300	0.020	0.110	0.200